Sizing the Protein Translocation Pathway of Colicin Ia Channels
نویسندگان
چکیده
The bacterial toxin colicin Ia forms voltage-gated channels in planar lipid bilayers. The toxin consists of three domains, with the carboxy-terminal domain (C-domain) responsible for channel formation. The C-domain contributes four membrane-spanning segments and a 68-residue translocated segment to the open channel, whereas the upstream domains and the amino-terminal end of the C-domain stay on the cis side of the membrane. The isolated C-domain, lacking the two upstream domains, also forms channels; however, the amino terminus and one of the normally membrane-spanning segments can move across the membrane. (This can be observed as a drop in single-channel conductance.) In longer carboxy-terminal fragments of colicin Ia that include /=90 mV, even a 26-A stopper is translocated. Upon reduction of their disulfide bonds, all of the stoppers are easily translocated, indicating that it is the folded structure, rather than some aspect of the primary sequence, that slows translocation of the stoppers. Thus, the pathway for translocation is >/=26 A in diameter, or can stretch to this value. This is large enough for an alpha-helical hairpin to fit through.
منابع مشابه
Protein Translocation across Planar Bilayers by the Colicin Ia Channel-Forming Domain
Colicin Ia, a 626-residue bactericidal protein, consists of three domains, with the carboxy-terminal domain (C domain) responsible for channel formation. Whole colicin Ia or C domain added to a planar lipid bilayer membrane forms voltage-gated channels. We have shown previously that the channel formed by whole colicin Ia has four membrane-spanning segments and an approximately 68-residue segmen...
متن کاملPathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein.
Pathway I. Group A nuclease colicins parasitize and bind tightly (Kd ≤ 10(-9) M) to the vitamin B12 receptor on which they diffuse laterally in the OM (outer membrane) and use their long (≥100 Å; 1 Å=0.1 nm) receptor-binding domain as a 'fishing pole' to locate the OmpF porin channel for translocation. Crystal structures of OmpF imply that a disordered N-terminal segment of the colicin T-domain...
متن کاملTranslocation trumps receptor binding in colicin entry into Escherichia coli.
Of the steps involved in the killing of Escherichia coli by colicins, binding to a specific outer-membrane receptor was the best understood and earliest characterized. Receptor binding was believed to be an indispensable step in colicin intoxication, coming before the less well-understood step of translocation across the outer membrane to present the killing domain to its target. In the process...
متن کاملProtein Translocation Across Planar Bilayers by the Colicin Ia Channel-forming Domain Where Will It End?
Colicin Ia, a 626-residue bactericidal protein, consists of three domains, with the carboxy-terminal domain (C domain) responsible for channel formation. Whole colicin Ia or C domain added to a planar lipid bilayer membrane forms voltage-gated channels. We have shown previously that the channel formed by whole colicin Ia has four membrane-spanning segments and an z 68-residue segment translocat...
متن کاملStructure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import.
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 122 شماره
صفحات -
تاریخ انتشار 2003